DELHI PUBLIC SCHOOL, JAMMU
 SESSION 2020-21 FOUNDATION WORKSHEET

SUBJECT: MATHEMATICS

1. Composite Numbers: A positive integer that has at least one divisor other than 1 and itself e.g. 4, 6, 8, 9, 10...
$4=1,2,4$
2. Prime Number: A +ve number having only two factors i.e $1 \&$ itself.
e.g. $2,3,5,7,11,13, \ldots$

2 is smallest and even prime no.
3. Twin Prime Numbers: It is a pair of prime numbers having difference 2.
e.g. $(3,5),(5,7),(11,13)$.....
4. Co-Prime Numbers: Those two numbers whose highest common factor is one.
$(2,3),(3,8) \ldots .$.
5. Perfect Number: It is a +ve integer that is equal to the sum of its +ve divisors.
e.g. $6,28,496,8128$,
$6=1,2,3$
$6=1+2+3=6$

Q1. Express each of the following as a rational number of the form $\frac{p}{q}$:
$\left(\frac{3}{8}\right)^{-2} \times\left(\frac{4}{5}\right)^{-3}$
Sol. $\frac{1}{\left(\frac{3}{8}\right)^{2}} \times \frac{1}{\left(\frac{4}{5}\right)^{3}}$
$=\frac{1}{\frac{3^{2}}{8^{2}}} \times \frac{1}{\frac{4^{3}}{5^{3}}} \quad \Rightarrow \frac{1}{\frac{9}{64}} \times \frac{1}{\frac{64}{125}} \Rightarrow \frac{64}{9} \times \frac{125}{64}=\frac{125}{9}$
Q2. By that number should $(-24)^{-1}$ be divided so that the quotient may be 3^{-1} ?
Sol. Let the required number be x . Then,
$(-24)^{-1} \div x=3^{-1}$
$\frac{(-24)^{-1}}{x}=3^{-1}$
$3^{-1} \times x=(-24)^{-1}$ (By cross multiplication)
$x=\frac{(-24)^{-1}}{(3)^{-1}}=\frac{3}{-24}=\frac{-1}{8}$
Q3. Find the values of each of the following:
(i) $3^{-1}+4^{-1}$

Sol. $\frac{1}{3}+\frac{1}{4} \Rightarrow \frac{4+3}{12}=\frac{7}{12}$
(ii) $\left(3^{-1}+4^{-1}+5^{-1}\right)^{0}$
$\Rightarrow\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)^{0} \Rightarrow\left(\frac{20+15+12}{60}\right)^{0}=\left(\frac{47}{60}\right)^{0}=1$
Q4. Find the value of x so that
$\left(\frac{5}{3}\right)^{-5} \times\left(\frac{5}{3}\right)^{-11}=\left(\frac{5}{3}\right)^{8 x}$
Q5. By what number should $\left(\frac{1}{2}\right)^{-1}$ be multiplied so that the product may be equal to $\left(\frac{-4}{7}\right)^{-1}$?
Q6. The size of a red blood cell is 0.000007 m and the size of a plant cell is 0.00001275 m . Compare these two.

Simplification of Addition and Subtraction

Q1. Add

$$
\begin{array}{ll}
\frac{5}{7}+\frac{3}{7} & \text { Take L.C.M of denominators } \\
=\frac{5+3}{7}=\frac{8}{7} &
\end{array}
$$

Q2. $\frac{4}{5}-\frac{2}{5}$
$=\frac{4-2}{5}$ Take L.C.M of denominator
$=\frac{2}{5}$

Q3. $\frac{5}{7}+\frac{4}{6}+\frac{3}{5} \quad$ Take L.C.M of denominators

$$
\begin{aligned}
& =\frac{150+140+126}{210} \\
& =\frac{416}{210} \\
& =\frac{208}{105}
\end{aligned}
$$

$$
5 \times 6 \times 7=210
$$

Q4. $\frac{5}{7}+\frac{3}{2}-\frac{9}{7}$
Sol. $\frac{5}{7}+\frac{3}{2}-\frac{9}{7}$
Take L.C.M of denominator

$$
\begin{aligned}
& =\frac{10+21-18}{14} \\
& =\frac{31-18}{14} \\
& =\frac{13}{14}
\end{aligned}
$$

Q5. $\frac{5}{7} \times \frac{2}{3}+\frac{1}{4}-\frac{3}{2}$

Sol. $\frac{5}{7} \times \frac{2}{3}+\frac{1}{4}-\frac{3}{2}$
$=\frac{10}{21}+\frac{1}{4}-\frac{3}{2}$
$=\frac{40+21-126}{84}$
$=\frac{61-126}{84}$
$=\frac{65}{84}$

Practice Questions:

(i) $\frac{5}{9}+\frac{3}{4}-\frac{7}{8}$
(ii) $\frac{2}{5}+\frac{7}{5} \times \frac{1}{3}-\frac{8}{9}$
(iii) $\frac{4}{5}\left(\frac{5}{7}+\frac{6}{3}-\frac{1}{2}\right)$
(iv) $\left(\frac{8}{9} \times \frac{7}{6}\right)+\left(\frac{9}{7} \times \frac{1}{9}\right)$
(v) $\frac{5}{3}\left(\frac{7}{6}+\frac{3}{9} \div \frac{3}{9}\right)$
(vi) $\left(\frac{8}{9} \times \frac{4}{6}\right)-\left(\frac{3}{2} \times \frac{1}{10}\right)$

Area and Volume

1) Find length of arc, Perimeter and area of semi-circle of radius 7 cm .

Sol. $\operatorname{Rod} \circledR^{\circledR}=7 \mathrm{~cm}$.
Length of arc $=\pi r=\frac{22}{7} \times(7)$
Perimeter $=\pi r+2 r=\frac{22}{7} \times 7+2 \times 7$
Area $=\pi r^{2}=\frac{22}{7} \times 7 \times 7$
2) Find Area of Trapezium of parallel sides 7 cm and 12 cm and distance between parallel sides equal to 6 cm .

Sol. Base $\left(b_{1}\right)=7 \mathrm{~cm}$
Base $\left(b_{2}\right)=12 \mathrm{~cm}$
Height (h) $=6 \mathrm{~cm}$
Area of Trapezium $=\frac{1}{2} \times\left(b_{1}+b_{2}\right) \times h$
$=\frac{1}{2} \times(7+12) \times 6$
3) Find surface area and volume of cuboid of length $20 \mathrm{~cm}, 14 \mathrm{~cm}, 18 \mathrm{~cm}$.

Sol. length $(\mathrm{l})=20 \mathrm{~cm}$
Breadth (b) $=14 \mathrm{~cm}$
Height (h) $=18 \mathrm{~cm}$
Volume $=l \times b \times h$
S.A $=2(l b+b h+h l)$
4) Radius of cylinder ${ }^{\circledR}=7 \mathrm{~cm}$

Height (h) $=10 \mathrm{~cm}$
Find Volume and Surface area.
Sol. Radius ${ }^{\circledR}=7 \mathrm{~cm}$
Height (h) $=10 \mathrm{~cm}$
Volume $=\pi r^{2} h$
S.A $=2 \pi r(h+r)$
5) Radii of two spheres be 7 cm and 14 cm . Find ratio of Surface areas and ratio of volumes.

Sol. Radius $\left(r_{1}\right)=7 \mathrm{~cm} \quad$ Radius $\left(r_{2}\right)=14 \mathrm{~cm}$
$\frac{\text { S.A.of } 1 \text { st }\left(S_{1}\right)}{\text { S.A.of } 2 n d\left(S_{2}\right)}=\frac{4 \pi r_{1}{ }^{2}}{4 \pi r_{2}{ }^{2}}=\frac{r_{1}{ }^{2}}{r_{2}{ }^{2}}$
$\frac{\text { Volume of } 1 s t\left(V_{1}\right)}{\text { Volume of } 2 \mathrm{nd}\left(V_{2}\right)}=\frac{4 \pi r_{1}{ }^{3}}{4 \pi r_{2}{ }^{3}}=\frac{r_{1}{ }^{3}}{r_{2}{ }^{3}}$

Probability

Example: A coin tossed 500 times with the following frequencies of two outcomes:
Head 240 times, tail 260 times
Sol. It is given that Probability of occurrence of these events
$\mathrm{P}(\mathrm{A})=\frac{\text { No.of trials }}{\text { Total No.of trials }}=\frac{240}{500}=0.48$
$\mathrm{P}(\mathrm{B})=\frac{\text { No.of trials }}{\text { Total No.of trials }}=\frac{260}{500}=0.52$
Example 2.The Probability that it will rain is 0.85 what is the probability that it will not rain tomorrow.

Sol. Total probability is equal to 1
So, $\mathrm{P}($ not rain $)=1-0.85=0.15$

Practice Questions:

Q1. A die is thrown Find the probability of getting
(i) A Prime Number
(ii) 2 or 4
(iii) A multiple of 2 or 3
(iv) A Number greater than 6

Q2. A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is
(i) A black king
(ii) black and a king
(iii) ' 10 ' of spade
(iv) a heart
(v) a red card
(vi) a black card

Q3. A bag contains 5 White and 7 Red balls. One ball is drawn at random what is the Probability that ball drawn is white.

Topic: Linear Equations

1) Solve for x
$\frac{4 x+3}{5 x+1}=\frac{3}{4} \quad$ By Cross Multiplication
$4(4 x+3)=3(5 x+1)$
$\Rightarrow 16 x+12=15 x+3 \quad$ Transposing like terms, we get
$\Rightarrow 16 \mathrm{x}-15 \mathrm{x}=3-12$
$\Rightarrow \mathrm{x}=-9$
\therefore Solution of equation is -9 .
2) The denominator of a Rational Number is four times its numerator. If 9 is added to Numerator the new number becomes $\frac{5}{2}$. Find the Rational Number.

Sol. Let the Numerator of a Rational Number be x.
\therefore Denominator of a Rational Number $=4 \mathrm{x}$

[\therefore Denominator is 4 times its Numerator]

Now,
Adding 9 to Numerator, then Numerator becomes x+9
According to Question
$\frac{x \pm}{4 x}=\frac{5}{2} \quad\left[\because\right.$ New Number becomes $\frac{5}{2}$, If we add 9 to Numerator of Original Rational Number $]$
By Cross Multiplication we get
$5(4 \mathrm{x})=2(\mathrm{x}+9)$
$\Rightarrow 20 \mathrm{x}=2 \mathrm{x}+18$
Transposing 2 x to L.H.S we get
$20 \mathrm{x}-2 \mathrm{x}=18$
$\Rightarrow 18 \mathrm{x}=18$
$\Rightarrow \mathrm{x}=\frac{18}{18}$
$\Rightarrow \mathrm{x}=1$
Thus, Original Rational Number $=\frac{x}{4 x}$

$$
\begin{aligned}
& =\frac{1}{4(1)} \\
& =\frac{1}{4}
\end{aligned}
$$

3) Denominator of a Rational Number is 5 less than its Numerator. If seven is added to numerator and the denominator becomes 5 times then the new number becomes 1. Find the original Rational Number.
4) Find the value of p

$$
\frac{6 p+8}{5}=\frac{-3 p+7}{3}
$$

5) Solve and check

$$
\frac{2 p+3}{5}+\frac{3 p-5}{2}=\frac{p+7}{3}
$$

BODMAS

When two or more than two operations are present, we use a basic rule to simplify

BODMAS

B \qquad Bracket

0 \qquad Of

D \qquad Division

M \qquad Multiplication

A \qquad Addition

S \qquad Subtraction

Example: Simplify

$90-7 \times 8+8 \div 2$
Solution:

$90-7 \times 8+(8 \div 2)$	(Division)
$90-(7 \times 8)+4$	(Multiplication)
$90-56+4$	(Addition)
$94-56$	(Subtraction)

38.

Q1. $\quad 64 \div 16 \times(3+2)$
Q2. $(5 \times 12)+6$
Q3. $\langle 5+(48 \div 12)\rangle \div 2 \times 3$
Q4. $\quad 30 \times 2+18 \div 3$
Q5. $(7 \div 7 \times 7+7-7)-(5-5+5 \times 5 \div 5)$
Solution

$$
\begin{aligned}
& (1 \times 7+7-7)-(5-5+5 \times 1) \\
& (7+7-7)-(5-5+5) \\
& (14-7)-(10-5) \\
& 7-5=2
\end{aligned}
$$

Q6. $\quad 13 \times 2-4$
Q7. $21+36-15 \div 3$
Q8. $\quad 18-12 \div 4+4 \times 4$
Q9. $102-12 \times 6+12 \div 2$
Q10. $8+4 \times 3-3+1-16 \div 4-6$

EXPONENT \& RADICALS

1) Find the value of x so that
$(-2)^{3} \times(-2)^{-6}=(-2)^{2 x-1}$
Sol. $\quad(-2)^{3} \times(-2)^{-6}=(-2)^{2 x-1} \quad$ Since bases are same, powers are added
$\Rightarrow(-2)^{3+(-6)}=(-2)^{2 x-1}$
$\Rightarrow(-2)^{-3}=(-2)^{2 x-1}$
$\Rightarrow-3=2 x-1$
$\Rightarrow-3+1=2 x$
$\Rightarrow-2=2 x$
$x=\frac{-2}{2}=-1$
2) If $5^{3 x-1} \div 25=125$, find x

Sol. $\quad \frac{5^{3 x-1}}{5^{2}}=125$
$\Rightarrow 5^{3 x-1-2}=5^{3}$
$\Rightarrow 3 x-1-2=3$
$\Rightarrow 3 x-3=3$
$\Rightarrow 3 \mathrm{x}=3+3$
$\Rightarrow 3 \mathrm{x}=6$
$\Rightarrow \mathrm{x}=\frac{6}{3}=2$

Unsolved:

1) Find the value of x so that

$$
\left(\frac{-5}{3}\right)^{-2} \times\left(\frac{-5}{3}\right)^{-14}=\left(\frac{5}{3}\right)^{8 x}
$$

2) Find the value of x if

$$
x=(100)^{1-4} \div(100)^{0}
$$

3) If $\frac{5^{m} \times 5^{3} \times 5^{-2}}{5^{-5}}, 5^{12}$, find m.
